3 research outputs found

    Development of Grid e-Infrastructure in South-Eastern Europe

    Full text link
    Over the period of 6 years and three phases, the SEE-GRID programme has established a strong regional human network in the area of distributed scientific computing and has set up a powerful regional Grid infrastructure. It attracted a number of user communities and applications from diverse fields from countries throughout the South-Eastern Europe. From the infrastructure point view, the first project phase has established a pilot Grid infrastructure with more than 20 resource centers in 11 countries. During the subsequent two phases of the project, the infrastructure has grown to currently 55 resource centers with more than 6600 CPUs and 750 TBs of disk storage, distributed in 16 participating countries. Inclusion of new resource centers to the existing infrastructure, as well as a support to new user communities, has demanded setup of regionally distributed core services, development of new monitoring and operational tools, and close collaboration of all partner institution in managing such a complex infrastructure. In this paper we give an overview of the development and current status of SEE-GRID regional infrastructure and describe its transition to the NGI-based Grid model in EGI, with the strong SEE regional collaboration.Comment: 22 pages, 12 figures, 4 table

    Visualization of Output from Large-Scale Brain Simulations

    No full text
    This project concerned the development of tools for visualization of output from brain simulations performed on supercomputers. The project had two main parts: 1) creating visualizations using large-scale simulation output from existing neural simulation codes, and 2) making extensions to  some of the existing codes to allow interactive runtime (in-situ) visualization. In 1) simulation data was converted to HDF5 format and split over multiple files. Visualization pipelines were created for different types of visualizations, e.g. voltage and calcium. In 2) by using the VisIt visualization application and its libsim library, simulation code was instrumented so that VisIt could access simulation data directly. The simulation code was instrumented and tested on different clusters where control of simulation was demonstrated and in-situ visualization of neural unit’s and population data was achieved.QC 20120309</p
    corecore